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Statistical Coupled Equations in Losdess Optical Fibers

BRUNO CROSIGNANI, BENEDETTO DAINO, AND PAOLO DI PORTO

Abstract—The problem of deriving sets of statistical coupled equa-

tions for the secorid and fourth moments of the mode amplitudes in a

fiber with mode coupling is considered, starting from the deter-

ministic coupled wave equations describing an electromagnetic field

propagating in a lossless fiber. Our results extend the work of Mar-
cuse, and, in particular, allow one to deduce sets of equations for
quantities which describe me cross correlation between different
modes. F&thermore, we obtain new’ results regarding the variances

and cross correlations of the power in the modes (fourth-order amp-
litude statistics).’

I. INTRODUCTION

AN electromagnetic wave propagating in an optical

fiber can be described by means of a set of coupled

differential equations for the amplitudes of the modes

supported by the guide. The coupling terms are, in par-

ticular, associated with the deviations of the fiber from

the ideal structure pertaining to a regular geometrical

form and refractive index distribution. In many situations,

these imperfections are distributed in a complicated fash-

ion along the guide, so that it is difficult to determine the

spatial behavior of the coefficients of the fundamental

equations for a given fiber, and, also, if they are known,

i! is practically impossible to deduce an analytical solu-

tlon.

In order to circumvent these difficulties, it is useful to
introduce a statistical ensemble of fibers possessing small

random deviations from a common ideal structure [1],

[2]. The problem is then to obtain simple equations for

the ensemble averages of quantities describing either the
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evolution of each propagation mode, or the interaction

between different modes. The perturbative approach [1],

[2] allows one to derive a closed system of equations for

the ensemble averages of the powers of the coupled modes,

also taking into account losses due to small coupling with

radiation modes.1

The behavior of the variance of the power has also been

investigated [2], in the limit of a large number of coupled

modes, thus enabling one to give an estimate of the ap-

plicability of the results of the statistical theory to a s;ngle

fiber.

In this paper, we wish to introduce an analytical ap-

proach, which slightly improves the procedure followed

in [1] and [2], and allows us to obtain, for a lossless

optical fiber, in a stI aightforward way, beyond the equa-

tions for the powers, closed systems of coupled equations

for ensemble averages of products of amplitudes of differ-

ent modes. Furthermore, we obtain a closed system of

equations connecting the averages of the power squares

to those of the products of different mode powers.

As a particular application, we estimate the normalized

variance of the asymptotic power distribution, which

turns out to depend on the number of coupled modes.

II. COUPLED POWER EQUATIONS

We start from the relevant deterministic wave equa-

tions valid for the single fiber, which couple forward-

traveling guided modes and are obtained from the general

theory [4] by neglecting coupling with backward-travel-

ing modes and radiation modes. For a steady-state situ-

ation, they read

1For good sources on the treatment of stochastic equations, see
[3].
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dce/dz = ~ AP,G, (p = 1,2,.. -In) (1)
~=1

where n is the number of coupled modes, c, represents

the amplitude of the forward-traveling vth mode, and z

labels the distance from’ the fiber input, The coupling

coefficient AM, can be expressed as

A.,(z) = iG(z) exp [i(B, – I%)z1 (2)

where 6P represents the propagation constant of the pth

mode at the fixed frequency u of the field, and KP, is, at

least for weakly guiding fibers, a purely imaginary quan-

tity depending on the irregularities of the geometrical

structure and of the refractive index of the guide itself [4].

By using (1) and its complex conjugate written for the

kth mode, one easily obtains

(d/dz) (Q+*c,) = & (&c,c~* + J&,*c,*c,) (3)
~=1

which can be formally integrated to yield, after two suc-

cessive iterations,

C~*(Z)CM(Z)= CJ+*(0)CM(C))+ ~ f dz’[Apv(z’) c~*(0)c, (O)
,=1 o

+ z4,.*(z’)c.*(0) c,(O)] + ; ~ /2dz’
V=lA=l o

“{A’’v(z’)(’dz’’[A,k(z’’)ck* ()ch(z”)z”)

+ A,x*(z’’)ck*(z’’) c,(z”) ]
}

+ : ~ /’ dZ’ {&.*(z’) /“ dz”
V=l A=l o 0

OIAgi(z’’)c,*(z’’) ck(z”)

}
+ A,l*(z’’)cA*(z’’) cP(z”) ] . (4)

In order to make the problem analytically tractable, it is

useful to introduce a statistical ensemble constituted by

similar fibers possessing different irregularities, which are

described by means of the correlation functions

{K.v(z’)&,(z) ) = (&(z)KA,(z’) )

= {Kp,(z – Z’)K,P(0) ) (5)

where W,vjh,p = 1,2,””” ,n, the symbol (“” ● ) means en-

semble average, and the ensemble of fibers is assumed to

be spatially homogeneous in the z direction. Accordingly,

the significant quantities are averages, over the same

ensemble, of the corresponding deterministic quantities.

If we now observe that

(A.,(z’)c~*(0)cv(O) ) = (Aw(z’) )c~*(o)cv(o) = O,

(W@ = v,” “ “ ,~) (Q

due to the absence of statistical uncertainty in the value

of the field at the beginning of the fiber and to the relation

(Ak,(z’) ) = O (7)

we can approximately write, after averaging both sides

of (4),

flp)z]

I%)zl

+ XX.(Z) exp [i(fh – h)z] / d3
o

I
“ exp [i(i?, – 8A) %](K~,*(3)K,~*(0) ) ,

(kj# = 1,2, . . .,n) (8)

where

xkM(z) = (ck*(z)cp(z) ), (kjp = 1,2, 00 .,n) (9)

and use has been made of the factorization hypothesis

(KP,(z’)KkA(z’’) c~*(z’’)c@”) )

= (KA,(z’)Khi(z”) )Xap(z”) (10)

for all values of the indices and for z’ z z“.

In order to determine the limits of validity of (8), we

first note that (10) is obviously satisfied for z’ — z“ > zO,

where Z. defines the “correlation length” of the set of

statistical variables KM., that is, the smallest length for

which

(KP,(i%)KkA(0) ) = O, for 3>,20 (11)

for all values of the indices. In the significant range

z’ – z“ < Zo, the approximation involved in (10) de-
pends on the variation of the X’s over a length of order

~, so that
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(K#,(z’)K,,(&)ca*(z’’) c~(2”) ) – (K,,(.Z’)K,X(2”) )Z@(z’)

(Kp,(2’)Kk,(z”) )Xap(z’)

=o(nKz,) (12)

where O is the order symbol and K = max (1 K.x I) over

all values of the indices, as can be seen by observing

from (1) that the absolute value of the relative variation

of the c, over zo does not exceed nKzo in most cases. Thus

the relative approximation of (8) is of the order nKzo.
Let us now make the further assumption, which can be

verified a po.steriori, of no significant variation of the X’s

over distances of the kind 1/ (BP — ih), 1/(& — ~, +

h – ih), unless

&- fh=o (13)

&-&+h-~k=o (14)

which only holds if p = 1, and if either P = v, i = k, or

y = k, k = V.2 That is to say, the X’s are slowly varying

functions of z, compared with the sine and cosine func-

tions appearing in (S). Thus, since integrals over z of

rapidly oscillating terms can be neglected with respect

to integrals of slowly varying functions, we are allowed

to consider only the terms of (8) fulfilling (13) or (14).

Within this approximation, we obtain from (8) the two

closed systems of equations

m .+CC

“=1 J—co

. (&p(3) &(()) )

● (IGJ%)IL,*(0) )., (k = 1,2,” “ “,?2)

(15)

and

(d/&’)x,M(z)

+ /+mWK..(3) Kkk”(0))
—m

(k#M = 1,2,...,n) (16)

where use has been made of (5) and of the relation [4]

KM,(3) = K,,(3). (17)

Z In testing this assumption, one has to be careful when considering
the approximately degenerate modes introduced by Gloge [5].

Equation (15) has also been obtained by Marcuse [1],
[2] and can be written in the form

d(&(Z) )/dZ= ~ hk,[(~,(~))
~=1

– (P,(z) )], (k = 1,2,.. “,n) (18)

where (P, ) = X.. labels the average power contained in

the vth mode and

!

+-
hk, = d3 exp [’i(ok– B,)%](Kk,(i3)&,*(o)) = h,k

—m

(19)

as obtained by (15) and (17). Equations (18) and (19)

entail the power conservation condition

(d/dz) i (P.(z)) = o. (20)
~=1

Furthermore, hk, is, in most cases, a real positive co-

efficient, as one can see from (19), keeping in mind

that ( IKk, 12) is a positive quantity and assuming

(~kv(~)K~.* (0) ) to be a well-behaved decreasing func-

tion of I 3 \. This assures that the asymptotic average

powers

(P~)= = lim (Pk(~) )
z+03

fulfill the equipartition relation

(P,)a = (P,)a = . . . = {Pn)a (21)

as one obtains from (18) by imposing the condition

lim (d/dz) (Pk (Z) ) = O, for all k.
z+‘w

As an example, we write down the solution of (18) for

n = 2, which reads

(p,(z) ) = *[P,(O) + P2(0)] + *[PI(O)

– P,(O)] exp ( –2h1zz)

‘(P,(z) ) = *[P,(O) + P2(0)] – *[P,(O)

– Pz(0) ] exp ( –2hlti) (22)

and satisfies both (20) and (21).

The system of (16) for the correlation terms is particu-

larly simple, since the X,,, (k # p), are not coupled among

themselves. For n = 2, the solution reads

Xl,(z) = Xl,(0) exp ( –az – +3.2) (23)

where a and P are the real positive quantities

\

+m
a = h~ + ~(hll + h.J + d3(K,1(2)K,,(0) )

—co

@= 2 ~m d%sin [(L% – B1)3](KM*(3)KM(0) ). (24)
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In the general case n >2, the amplitude correlation is

of the type given in (23), which entails that, if no power

is present at z = O in the iith and pth modes, Xky (z) = O

for all z. This implies that no information on the relative

phase of ~k and c, is contained in the statistical theory, so

that it is not possible to make any prevision on the influ-

ence of mode coupling on an interference experiment

between the kth and pth modes in a single fiber.8

III. COUPL13D EQUATIONS FOR

POWER PRODUCTS

+ (C.*CPCX*CP)exp [i(h – A) ~1

+ (c.*cxc.*c,) exp [i(p, – & + % – F%)Z]

The evolution of a four-amplitude product of the type

ca*c~ck*c~ can be derived from (1) in the form
.
/

@da exp [i(@x – BP)%](K,V*(3)KPk(0) )
o

(d/dz) (c.*c,$ck*c@) + (ch*c6c,*c,) exp [i(@v – h + 1% – 8.)21

– C.*C6(d/czz) (C?S*CJ+ ck*cM(wdz) (C.*C6)—
.

. n

= ~ AP,C.*C8C,*C.+ ~ A4,,*c.*c,c,”c,
+ same terms with the exchange {k - a}. (26)“=1 ~=1

n If we put a = p, P = k, and remember that I c~ [2 repre-
+ ~ i&vC.*CvCk*Cp + ~ &*c,*cock*cfl, sents the power contained in the pth mode, we derive

p=1 “=1
from (26) the closed system of coupled equations

(a, fl, k,~ = 1,2, ”-”,n). (25)

(d/dz) (P,’(z)) = 25 hw[z(~,(z)~,(z) )
We now follow a procedure analogous to that of Section v#iL

II, that is, after a formal integration of (2,5), we average

both sides of the obtained equations within a relative
– (P.’(z) )], (p = 1,2, ” “ .,n) (27)

approximation of the order O (nKzo), thus obtaining the (d/dz) (Pk(z)P#(2) )
system of differential equations

(d/dZ) (ca*cjjck*Cp)
= –2h,&(P, (z) Pp(z) ) + ~ hfi,[(P, (z) P,(.z) )

J!=l

—. 55 [ {Cu*f33Ck*ch)m [~(& – f%).zl
X=1 V=l

—

(P,(Z) P,(Z) )], (k # M = 1,2,...,n) (28)

Jo

which are valid within the (‘rotating wave approxima-
+ (C.*CBCX*C,) exp [i(6M – B, + l% – P*) 21 tion” previously used in neglecting terms not verifying

J

either (13) or (14). The set of (27), already derived by
. mda f?Xp [’i(dk – I%) 8](~kA*(~)~.r(o) ) means of the perturbative approach [2], and (28) fulfills

o the power conservation condition in the form

+ (ca*cick*cv) t!xp [’i(& – ii+ r% – i%)z]

(d/dz) ([5 P,(z) -y) = o. (29)

.
/

~ da exp [i(e~ – if36)3] (I@(a) &(0))
“=1

o It is now possible to determine for the asymptotic quan-

+ (CX*CBC,*C,)exp [i(@p – B. + ,& – &J~l tities

.!mb exp [;(B. – ,fh) 3]{&.* (~)~~,(o) )
o }

+ same terms with the exchange {6 e P]

(~k’)a = lim (~k’(z) )
Z-D m

(~k~p)a = h (Pk(z)PP(z) ), (k #p= 1,2,.. ”,n)
z+co

(30)
2While in most practical problems the attention is focused on the

behavior of single--mode power, the relative phases of the various
modes are relevant in measurements of the spatial and temporal

the following relation which is obtained by imposing the

coherence of the transmitted field [6]. vanishing of the left-hand side of (27) and (28):
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(P,’). = (P,’)a= . . . = (P.’). =2(P,PJ.,

(k#/.J=l,2,...,n). (31)

In order to obtain information on the statistical power

distribution after long distances, which in particular can

furnish a criterion for the reliability of the previous results

when applied to a single fiber, we note that from (21)

and (20) it follows that

(P,)a = n-’ i (P,)a = n-’ i P“(o) ,
v-l y=l

(k = 1,2, . . .,n) (32)

while (31) and (29) furnish

(Pk’)a = [n+ n(n – 1)/2]-’([~ P.]’)a
v-l

= [n+ n(n – 1)/2]-’[_ P.(O) ]2,
V=l

(k = 1,2,... ,n). (33)

By comparing (32) and (33) we obtain

(P,’). _ 2%

(l%).’
(k = 1,2, . . .,n) (34)

n+l’

which also yields, with the help of (31),

(m’,).
(P,)a(P,)a = * ‘

(k #p= 1,2,. ”., n). (35)

If we introduce the power fluctuation of the single fiber

defined as P~(.z) = (P,(z)) + AP,(z), we can write (34)
and (35) in the form

(AP,’)a = ~: (P,)a’, (k = 1,2,.0 “,n) (36)

(ApkApM)a = – (Pk)a(p,)a(n + 1)-1,

(k# K = 1,2,...,n). (37)

For a large number of modes, we obtain from (36) the

following relation:

(Apk’)c ~
— .

(P,’)a ‘
(k = 1,2,. ● “,n) (38)

which is consistent with an exponential intensity distribu-

tion and agrees with the results of [2], in which the cross-

correlation terms given in (37) are neglected a priori.

The asymptotic “normalized variance” decreases for a

small number of coupled modes and reduces to

W.k’)a ~— .
(P,’)a 3’

(k = 1,2,.. .,n) (39)

for n = 2. We finally observe that the decreasing impor-

tance of the cross-correlation terms, when n becomes

large, is clearly shown by (37’).

IV. CONCLUSIVE REMARKS

We have used a simple statistical method in order to

evaluate the coupling between different modes propagating

in an optical fiber. We have considered an ensemble of

similar fibers in which the effects of mode coupling pre-

dominate over those of power losses. That is a case of

increasing practical interest [7], [8].

The main contributions of this paper consist of the

evaluation of the cross correlation between powers of

different modes and in the determination of the asymptotic

normalized variance of single-mode power, in the general

case of a finite number of coupled modes.
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