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if | ¢ |z is sufficiently large. This demonstrates that the
numerical factor on the right side of (56) cannot be in-
creased with zeros restricted by (57).
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Statistical Coupled Equations in Lossless Optical Fibers

BRUNO CROSIGNANI, BENEDETTO DAINO, anpo PAOLO DI PORTO

Abstract—The problem of deriving sets of statistical coupled equa-
tions for the second and fourth moments of the mode amplitudes in a
fiber with mode coupling is considered, starting from the deter-
ministic coupled wave equations describing an electromagnetic field
propagating in a lossless fiber. Our results extend the work of Mar-
cuse, and, in particular, allow one to deduce sets of equations for
quantities which describe the cross correlation between different
modes. Furthermore, we obtain new results regarding the variances
and cross correlations of the power in the modes (fourth-order am-
plitude statistics).’ ’

I. INTRODUCTION

N electromagnetic wave propagating in an optical
fiber can be described by means of a set of coupled
differential equations for the amplitudes of the modes
supported by the guide. The coupling terms are, in par-
ticular, associated with the deviations of the fiber from
the ideal structure pertaining to a regular geometrical
form and refractive index distribution. In many situations,
these imperfections are distributed in a complicated fash-
ion along the guide, so that it is difficult to determine the
spatial behavior of the coeflicients of the fundamental
equations for a given fiber, and, also, if they are known,
it is practically impossible to deduce an analytical solu-
tion.

In order to circumvent these difficulties, it is useful to
introduce a statistical ensemble of fibers possessing small
random deviations from a common ideal structure [17,
[2]. The problem is then to obtain simple equations for
the ensemble averages of quantities describing either the
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evolution of each propagation mode, or the interaction
between different modes. The perturbative approach [17,
[2] allows one to derive a closed system of equations for
the ensemble averages of the powers of the coupled modes,
also taking into account losses due to small coupling with
radiation modes.

The behavior of the variance of the power has also been
investigated [27, in the limit of a large number of coupled
modes, thus enabling one to give an estimate of the ap-
plicability of the results of the statistical theory to a single
fiber.

In this paper, we wish to introduce an analytical ap-
proach, which slightly improves the procedure followed
in [1] and [2], and allows us to obtain, for a lossless
optical fiber, in a stiaightforward way, beyond the equa-
tions for the powers, closed systems of coupled equations
for ensemble averages of products of amplitudes of differ-
ent modes. Furthermore, we obtain a closed system of
equations connecting the averages of the power squares
to those of the products of different mode powers.

As a particular application, we estimate the normalized
variance of the asymptotic power distribution, which
turns out to depend on the number of coupled modes.

II. COUPLED POWER EQUATIONS

We start from the relevant deterministic wave equa-
tions valid for the single fiber, which couple forward-
traveling guided modes and are obtained from the general
theory [4] by neglecting coupling with backward-travel-
ing modes and radiation modes. For a steady-state situ-
ation, they read

! For good sources on the treatment of stochastic equations, see
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dey/dz = X Agc,,

y=1

(”’ = 1,2,"',7’1/) (1)

where n is the number of coupled modes, ¢, represents
the amplitude of the forward-traveling »th mode, and 2
labels the distance from the fiber input. The coupling
coeflicient A,, can be expressed as

Au(2) = Kup(2) exp [1(8, — B8,)2] (2)

where B, represents the propagation constant of the wth
mode at the fixed frequency w of the field, and K,, is, at
least for weakly guiding fibers, a purely imaginary quan-
tity depending on the irregularities of the geometrical
structure and of the refractive index of the guide itself [4].
By using (1) and its complex conjugate written for the
kth mode, one easily obtains

(d/dz) (Ck*(},,,) = Z (Auvcvck* + Akv*cy*cp)

=1

(3)

which can be formally integrated to yield, after two suc-
cessive iterations,

a*(2)cu(z) = a™(0)c.(0) + Zn:

y=1

f [ Au () % (0) 0y (0)
0

+ A4t a1+ S T [ d

v=1A=1"0

{4 [ a7 tanEa@a@)
0
+ At (@)ool ]]

+5 % [ {Ak,*(z» f "

y=1A=1%0

. [A#)‘(Z”)Cy* (Z”)C)\(Z”)

+ An*(2") cx*(ﬁ")cu(z")]} . (4)
In order to make the problem analytically tractable, it is
useful to introduce a statistical ensemble constituted by
similar fibers possessing different irregularities, which are
described by means of the correlation functions

(Kun(2) Ko (2)) = (Kun(2) Ky (2))
= (Kuw(z — 21K, (0)) (5)

where p,,\,p = 1,2,-++,n, the symbol {-++) means en-
semble average, and the ensemble of fibers is assumed to
be spatially homogeneous in the z direction. Accordingly,
the significant quantities are averages, over the same
ensemble, of the corresponding deterministic quantities.
If we now observe that
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(Awr(#)e*(0)¢,(0) ) = (Au(2') )ar*(0)c,(0) = 0,
(V‘;Vik = 1,2,.- ‘,’ﬂ) (6)

due to the absence of statistical uncertainty in the value
of the field at the beginning of the fiber and to the relation

(Aw(@)) =0 (7)

we can approximately write, after averaging both sides
of (4),

n n

(@i Xin(2) = T 3 {ka) exp [i(6s — £r)2]

y=1 A=1

-/w dsexp [Z(Br — B,) %]
0

(K, (3) K0 (0) )
+ X (2) exp [(8s — B + B — B))z]

[ a5 exp Li6i — 69
0

* (Klﬂ’(g) K> (O) >
+ X (2) exp [(Bs — Br + B, — Br)z]

./w da exp [4(Br — Bu) 7]

* <Kkv* ( 3) Ku)\ (0) >

+ X(e) exp [il6r — 6921 [ da
0

- exp [2(8, — Br) 3 J(Ki,* (3) Kn*(0) )} )

(k’ﬂ' = 1,2, '}n) (8)

where
Xuw(2) = (a*(2)eu(2)),
and use has been made of the factorization hypothesis
(Kun(2) Kir(2"") €a®(2'") co(2") )
= (Kun(#)Kir (") ) Xap(2"")  (10)

for all values of the indices and for 2’ > 2.

In order to determine the limits of validity of (8), we
first note that (10) is obviously satisfied for 2/ — 2/ > z,
where 2z, defines the ‘“correlation length” of the set of
statistical variables K,,, that is, the smallest length for
which

(b = 1,2, ';n) (9)

(K (3) Kin(0)) = 0, for 3 > 2z (11)

for all values of the indices. In the significant range
Z' — 2/’ < z, the approximation involved in (10) de-
pends on the variation of the X’s over a length of order
20, S0 that
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(K () K (2")ca*(@")es(2")) — Kur(@)Kir (@) ) Xas(?')
(K () Kia(#") ) X op(2')

(12)

where 0 is the order symbol and K = max (| K,» |) over
all values of the indices, as can be seen by observing
from (1) that the absolute value of the relative variation
of the ¢, over 2 does not exceed nKz, in most cases. Thus
the relative approximation of (8) is of the order nKz,.

Let us now make the further assumption, which can be
verified a posteriori, of no significant variation of the X’s
over distances of the kind 1/(8, — 8), 1/ (B — B +
Br — Bx), unless

6“—,3x=0
ﬁﬂ_ﬂv""ﬁ)\_ﬁk':o

which only holds if p = A, and if either p = », A = Fk, or
w =k, A = ».2 That is to say, the X’s are slowly varying
functions of z, compared with the sine and cosine func-
tions appearing in (8). Thus, since integrals over z of
rapidly oscillating terms can be neglected with respect
to integrals of slowly varying functions, we are allowed
to consider only the terms of (8) fulfilling (13) or (14).
Within this approximation, we obtain from (8) the two
closed systems of equations

(13)
(14)

n +o0

(d/d2) X() = Xun(2) X | d3 exp [i(B — B,)3]
« (K3, (3) K, (0))
+ zn: X, e d3 exp [¢(Br — B,) 5]
(K (8)Kis*(0)), (k= 1,2,+++,m)
(15)
and
(d/d2) X1 (2)

= X {5 [ dhoxp L6, = 893K () Kon()

=10

+o0
+ / 33K .. (3) Ku*(0) )

) d3 exp [2(By — Br) 3 1{Kx,*(3) Kz,*(0) >} )

=10
(k #u=12-- ',’ﬂ) (16)
where use has been made of (5) and of the relation [4]

KMV(a) = K,;,.(%). (17)

2 In testing this assumption, one has to be careful when considering
the approximately degenerate modes introduced by Gloge [5].
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Equation (15) has also been obtained by Marcuse [1],
[2] and can be written in the form

UPu()Ydz = 5 bl (Po(2))

y==1

— P, (k= (18)

where (P,) = X,, labels the average power contained in
the »th mode and

+oo

ds exp [1(Br — B5) 3 (K. (3) Kiy* (0) ) = hur

1,2,+++,n)

hkw =

‘ (19)
as obtained by (15) and (17). Equations (18) and (19)
entail the power conservation condition

(d/dz) Zi: (P,(2)) = 0. (20)

Furthermore, A, is, in most cases, a real positive co-
efficient, as one can see from (19), keeping in mind
that ([Kx |?) is a positive quantity and assuming
(K}, (3)K:,*(0) ) to be a well-behaved decreasing fune-
tion of |&]. This assures that the agymptotic average
powers

(Pr)e = lim (Pi(2))

Fad el

fulfill the equipartition relation
<P1>a = <P2>a = = <Pn>a
as one obtains from (18) by imposing the condition

lim (d/dz) (Pi(2)) = 0,

Z->

(21)

for all k.

As an example, we write down the solution of (18) for
n = 2, which reads

(Pr(2)) = 3LP1(0) + P2(0)] + 3LP:(0)
— Py (0) Jexp (—2hp2)

(P2(2)) = 3[P1(0) + P2(0)] — 3[P1(0)
— P3(0) Jexp (—2h12)

and satisfies both (20) and (21).

The system of (16) for the correlation terms is particu-
larly simple, since the X4, (k # ), are not coupled among
themselves. For » = 2, the solution reads

(22)

X12(2) = X12(0) exp (—az — iB2) (23)
where o and 8 are the real positive quantities
~+-00
a = h12 + %(hu + h22) + d3(K11(3)K22(0)>
=2 dsin[(B— p)Ks*B)Kn(0)).  (24)

0
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In the general case n > 2, the amplitude correlation is
of the type given in (23), which entails that, if no power
is present at z = 0 in the kth and uth modes, X (2) = 0
for all z. This implies that no information on the relative
phase of ¢; and ¢, is contained in the statistical theory, so
that it is not possible to make any prevision on the influ-
ence of mode coupling on an interference experiment
between the kth and wth modes in a single fiber.?

II1. COUPLED EQUATIONS FOR
POWER PRODUCTS

The evolution of a four-amplitude product of the type
co*cserc, can be derived from (1) in the form

(d/d2) (ca*cser™cu)
ca*ca(d/dz) (ce¥cu) ~+ cx*eu(d/dz) (ca*cs)

n n
3o Ageateser®e, + D Artea*cse e,

r=1 y=1

+ X5 Ageatecten + 2 AwtesFescrten,
y=1 v=1
(‘x; 8, k: M= 1727° ¢ '7”’) . (25)

We now follow a procedure analogous to that of Section
I1, that is, after a formal integration of (25), we average
both sides of the obtained equations within a relative
approximation of the order 0(nKz), thus obtaining the
system of differential equations

(d/dz) {ca*caer*cu)

=22 [ {ea*cger¥or) exp [T(B: — Br)z]

ot
: /0 " 43 exp [i(Br — ) 51K (3) K (0))
+ (ca*cser*c,) exp [E(Bs — By + Br — Bi)2]
: / " 43 exp [i(8 — 60 31(Kin* (3) K (0))
+ (ea*erci¥e,) exp [i(B, — By + Bs — Br)z]
. /0 " 45 oxp [3(Br — B5) 31K (3) K (0) )
4 {ex*csei*c,) exp [1(B — By + Br — Ba)z]
. /0 " 43 exp [i(Ba — B1) 31K e (3) Ko (0) >}
+ same terms with the exchange {8 <> u}

$ While in most practical problems the attention is focused on the
behavior of single-mode power, the relative phases of the various
modes are relevant in measurements of the spatial and temporal
coherence of the transmitted field [6].
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+ 22 {(ca*cﬁcy*m) exp [2(By — Bk + B — Br)2]

a0

: /0 d5 exp [i(By — B,)31(Kw*(3) K (0))
+ {(ca*eser®eu) exp [i(Br — Br)z]

. /0 " 45 exp [5(8, — B2) 31 (K (3 Kn*(0))
+ (ca*ercs¥cu) exp [3(8, — B -+ Bs — Br)z]
) " 45 exp [i(Br — B) 31K (3) K (0))
+ {ex*cgescu) exp [4(8y — Bi + Br — Bo)2]

: fo " 33 exp [i(Ba — B1) 31(Kin* (3) Kan*(0) >}

+ same terms with the exchange {k <> a}. (26)

If we put @ = g, 8 = k, and remember that | ¢, |* repre-
sents the power contained in the uth mode, we derive
from (26) the closed system of coupled equations

(d/d2) (P> (2)) = 2£ hus[2(Pu(2) P, (2))

vt
- (Puz(z) >:|7 (b= 1,2,-++,n) (27)
(#/32) (Pu(a) Pa(2))
= I (PUAPAD) + Bl (Po(2)Pa(2))
— PUAPA)T+ T (B Po(2))
— (Pu(2) Pu(2))], (b u=12--+n) (28)

which are valid within the ‘rotating wave approxima-
tion” previously used in neglecting terms not verifying
either (13) or (14). The set of (27), already derived by
means of the perturbative approach [27], and (28) fulfills
the power conservation condition in the form

(d/d2) (3 Po() ) = 0.

v=]

(29)

It is now possible to determine for the asymptotic quan-
tities

(Pi*)e = lim (P¥*(2) )

Fad-

(PkPﬂ>a = lim (Pk<z)Pu(Z) )7

2>

(k = v = 1}2)“'771‘)

(30)

the following relation which is obtained by imposing the
vanishing of the left-hand side of (27) and (28):
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<P12>a = (P22>a = e = <Pn2>a = 2<Pka.>a,

(bp=12---,n). (31)

In order to obtain information on the statistical power
distribution after long distances, which in particular can
furnish a criterion for the reliability of the previous results
when applied to a single fiber, we note that from (21)
and (20) it follows that

(Pie = 171 5 (P)e = 7t 33 P, (0),

p=1 y=1

(k = 1,2,¢+- 7”’) (32)

while (31) and (29) furnish

P2y = [n+ n(n — 1)/215CE PP

y=1

= [n+ n(n — 1)/217[% P.(O) T,

r=1

(k = 1,2, ',’I’L). (33)
By comparing (32) and (33) we obtain
<Pk2>a 2n
= ’c — 1 2 LR ) 4
s = i (k= 120--m) (34)
which also yields, with the help of (31),
PiP,)e
Bl _ 2 hu= 1,200, (35)

(PiYalPu)a n+1’

If we introduce the power fluctuation of the single fiber
defined as Pi(2) = (Px(2)) + APx(2), we can write (34)
and (35) in the form

<APk2>a = Z-_l' i <Pk>a2, (k = 1;27“ °1n) (36)
(AP AP, ), = — (Pk>a(Pu>a(n + 1),
(k # p=12-. '7'”')- (37)

For a large number of modes, we obtain from (36) the
following relation:

Pi2),
SA_IE_Z‘ =1, (k = 1)2"")77/)

Pe (38)
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which is consistent with an exponential intensity distribu-
tion and agrees with the results of [2], in which the cross-
correlation terms given in (37) are neglected a priors.

The asymptotic “normalized variance’”’ decreases for a
small number of coupled modes and reduces to

(APk2>a -
<P k2>a

for n = 2. We finally observe that the decreasing impor-
tance of the cross-correlation terms, when n becomes
large, is clearly shown by (37).

IV. CONCLUSIVE REMARKS

We have used a simple statistical method in order to
evaluate the coupling between different modes propagating
in an optical fiber. We have considered an ensemble of
similar fibers in which the effects of mode coupling pre-
dominate over those of power losses. That is a case of
increasing practical interest [77], [8].

The main contributions of this paper consist of the
evaluation of the cross correlation between powers of
different modes and in the determination of the asymptotic
normalized variance of single-mode power, in the general
case of a finite number of coupled modes.

b=t

’ (k = 1,2,-- '7”) (39)
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